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1 ABSTRACT

We introduce a novel visual counting device beiblg &0 automatically discriminate between partioigeof
non-motorised traffic (pedestrians, bicyclists)eensor elements (pixels) respond to relative lighnsity
changes, thus avoiding conventional imaging andapyi issues usually raised by the public when e
to visual surveillance. Three-dimensional deptlorimfation is computed with the stereo principle, amel
set of light intensity change events is groupecttiogr with a clustering algorithm to discriminaegtveeen
moving objects. A classification algorithm baseddascriptive features then identifies indivual ggsaints
of non-motorised traffic. A preliminary evaluation a dataset with 128 passages shows a classifiaatie
of 92% for riding cyclists and 100% for pedestriéms2+1 classification, and 43-96% for 4+1 classifion
distinguishing between riding cyclists, pedestrjamaslking cyclists, umbrellas and other objects.

2 INTRODUCTION

Volumes of non-motorised traffic are defined by thenber of pedestrians and bicyclists per unit tifieey
are a key performance measure necessary to evahetenpact of pedestrian and bicycle infrastruetur
improvements, to develop estimates of pedestri@hbacyclist risks, and to understand the environtaen
correlates of walking and cycling (SCHWARTZ et #000). One of the most promising strategies for
improving the amount and quality of non-motoriseaffic volume data is to employ automated counting
devices. Automated devices have the potential doae costs associated with traditional manual cognt
methods, including the cost of data input and g®rand to produce long-term continuous countsoof n
motorised traffic activity. Without automated deasc the manual collection of counts of more thdava
days in length is highly impractical. (GREEN-ROES&Lal., 2008).

Ideally, rather than seperately counting pededri@mnd bicylcles with dedicated automated devides i
desirable that a single self-contained device bbe tabdiscriminate between the participants and/ipat
the interface the various traffic counts. Fig. $adws a typical setup, where a park has two seplaaes
for pedestrians and cyclicts, respectively. Fig. ditows a similar setup with a bicyle and pedestidae.
Fig. 1c) shows a mixed scenario comprising ridigglists, pedestrians and pedestrians with umbré#as
feature often not taken into account) captured ftloenbridge shown Fig. 1b).

The main objective of the SmartCountPlus projetb isnplement a stand-alone sensor device beirgtabl
deliver separate counts for pedestrians and bisyael their velocities. After a brief review of thimte of
the art of automated pedestrian and bicyle countingection 3, this paper introduces the SmartGelust
sensor device in Section 4. Section 5 sketchesntia principles of individually counting non moteed
traffic participants on data captured with the S@auntPlus sensor device. Section 5 provides phedirty
experimental results performed on data capturdéteascenario of Fig. 1b) and c).

Figure1a,band c

Fig. 1: Many non-motorised traffic scenarios areadi (a) bicycle and pedestrian lane in a park {©)de
and pedestrian lane under a bridge (c) mixed siemaolving bicyclists, pedestrians and pedessianth
umbrellas as viewed from the bridge in (b)
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3 STATE OF THE ART AND CONTRIBUTION

Technologies for obtaining automatic pedestrian nt®uhave been mainly developed for indoor
environments (e.g. shopping malls) or low-densudoor environments (e.g. trails). The study in EERI-
ROESEL et al., 2008) provides an overview of ergptpedestrian counting technologies. Due to stgongl
varying environmental conditions such as rainfatipw and lighting, existing technologies are oftert
suited for counting pedestrians in urban outdoorirenments. For example, (CLARK, 2009) reports
findings from monitoring success and failure of kirad investment in London, where laser based casnte
wer reported not to work as desired. Instead, (CKARD09) reports ‘CCTV’ (Closed Ciruit Televisioa} a
sucessful technology, without specifying the tedbgyp or product which actually performs automated
analysis of the captured video data for pedesttiaumting. The same holds for the study of pedestria
quality standards in New York City (NG, 2009). lede reliable automated video analysis for pedestria
counting is still a challenging scientific top imetfield of computer vision, especially for crowdszgenarios
involving dense groups of people, see e.g. thegadiogs of the Performance Evaluation of Trackind a
Surveillance (PETS) workshop series (PETS, 2009hilaVsurveillance systems exist which classify
between vehicles and loose groups of pedestriags(®HAH et al., 2007), there is currently no syst
available discriminating reliably between pedessiand cyclists. Recent commercially available pedn
counting technologies include the modulated ligitemsity (MLI) (IEE,2010), which does not discrirate
between pedestrians and bicyclists.

Automatic bicycle counting technologies are alreadgre established and have similar advantages and
disadvantages as pedestrian counting technolotlieagh desnse groups of bicycles are less likedy th
pedestrian crowds. As an example, automated biaymlmts have been measured in the city of Vienna,
Austria since 2002 with the help of radar technglognd recently with induction loops. Simple rules
dicriminate between bicyclists and other objects.

SmartCountPlus builds upon an existing visual imdoeople counting technology developed by the AIT
Neurinformatics group (SCHRAML et al, 2010a). Thighly accurate people counting system has been
already installed at a number of indoor locatiansluding a crowd control systems for a subwayi@tat
attached to a soccer stadium (SEER et al, 2008).m&jor objective of SmartCountPlus is to exterid th
counting technology to be robust against outdoaditimns, where the major contributions are afed:

« to extend the maximum capturing area of 3.3 méteosder to cope with broader outdoor scenarios,

« to develop embedded clustering and classificatigorghms which run on the sensor device and are
able to discriminate between pedestrians, pedestudth umbrellas and bicyclists and calcluate
their velocities,

« to perform extensive field tests at various sc@sarand to model classification and counting
accuracy as well as dependencies on external delieas weather.

4 SMARTCOUNTPLUS SENSOR DEVICE

The sensor device is based on the principle okstersion which aims at duplicating the human Misua
system by computing a third dimensions (depth) giginpair of vision sensors. With stereo processing,
adverse environmental conditions such as rain et shadows (which are a major challenge in visual
processing systems) can be better met than witbra 8D visual processing (GRUBB et al., 2004).
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Figure 2 a, b, c,andd

Fig. 2: (a) Still image of two cyclists from a ca@mtional video camera (b) light change events eftiino
dynamic stereo vision sensors corresponding t@dbae in (a), (¢) depth map computed by sterecx@dr
code indicating range in meters from sensor
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Figure 3aand b

Fig. 3: (a) SmartCountPlus sensor housing (b)ti®n of reduced capturing width when sensor ceis
mounted in a slanted position.

One vision sensor consists of an array of 128x128yaelements (pixels), where the pixels respond to
relative light intensity changes. Note that sinoé/ dight intensity changes are captured, no ctadsmage

in the visual spectrum is ever generated. FigsBays a still image of a scene captured with a eotional
video camera: The scene contains two riding cy;lasbhd Fig. 2b) shows the two corresponding twreeste
pairs which are generated by the SmartCountPlusosgna dark pixel indicates a change from higénsity

to low intensity and vice versa. Only the pixelmeénts which are changing intensity, so called ‘edsr
events’ are transmitted by the sensor. Fig. 2cjvshibe corresponding ‘event depth map’, where tilerc
indicates the distance from the sensor (see Fig.Sukh spatio-temporal depth data are the inputhe
algorithms discriminating between cyclists and jstriken.

Note that the image in Fig. 2a) is only for illadton purposes, and the sensor device never capture
conventional image. People can never be recogiiziak captured depth data illustrated in Fig. 2 c) —
such a processing therefore meets privacy conegrith are always raised when capturing visual data.

Fig. 3a) shows the housing of the SmartCountPlugdgincluding the two lenses of the two steresion
devices which are separated by 26 cm. When indtall@ ‘top view’ bird’s eye position, a cross-sentof

4.4 m width can be captured. In contrast to indsm@narios, top view positions are often hard t@iobin
outdoor scenarios, thus requiring mounting the @edgvice in a slanted position. A slanted mounting
position, however, will reduce the overall widthtbé captured cross-section, as illustrated in #iy. Table

1 quantifies the reductions of the capturing widdpending for different angles as well as the ogitim
maximum mounting height. The ‘left’ and ‘right’ wilts refer to the areas left and right of the dastted
line in Fig. 3b).

optimal 10° slant 20° slant 30° slant
Stereo basis [cm] 26 26 26 26
Slant angle [degr] 0 10 20 30
Mounting height [m] 5.2 5.15 5.0 4.8
Capturing width (left) [r 2.2 2.71 3.2 3.t
Capturing width (right) [m] 2.2 1.18 0.44 0.0
Capturing width [m] 4.4 3.96 3.64 3.45

Table 1: Optimal mounting height and capturing Wiftir cross-sectional counting depending on thenting angle

5 CLUSTERING AND CLASSIFICATION

The SmartCountPlus stereo vision sensor continyogisherates events as a reaction to moving objects
crossing the sensor field of view. Fig. 4 providesl overview of the processing steps, which areries
in more detail in (BELBACHIR, 2010), (SCHRAML, 20apand (SCHRAML, 2010b).

The objetive of clustering is is to group togetbegents belonging to the same moving object (pedestr
cyclists, umbrellas). The clusters are computethenimeaning that all events are grouped in ore stieh
that individual events are assigned to a clustenee.
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Fig. 4: Steps for processing sensor data as showigi 2 to classify between different participants

The objective of classification is to recognize thestered objects’ events and separate them gdegirians
and cyclists. After having built clusters from etgethrough moving objects, descriptive clusterfesg are
used to separate between pedestrians and cyclitshe help of a decision tree. We use three featu
(length, width and passage duration) for the diasdion as illustrated in Fig. 5. For the decisitge,
thresholds on length, width and passage durateseirin order to distinguish between the multgiigects,

T1: exit time from FOV }Hdﬂ"l

T1-T0: passage durmhion
Leng il

eantry time to FOV

Fig. 5: lllustration of the features used for clfisation

6 EXPERIMENTAL RESULTS

To evaluate the event-based system and the ctadf method, we have collected real-world datthat
test site shown in Fig. 1b). Test scenarios haea lsellected with a total of 128 passages (82 gidyclists;
26 pedestrians, 13 walking cyclists and 7 pedestnegith umbrellas). Fig. 6 shows selected testase

Fig. 7a) shows classification results of riding lts and pedestrians for multiple scenarios usgiug
dimensions (length to width ratio in the x-axis gpaksage duration in the y axis). The separatimg li
represents the thresholds used in the decisiorfare@e classification. The two objects classeas amost
linearly, separable. However, running persons cémcide with slowly riding cyclists.

Fig. 7b) and c) present classification results 2811 classes (pedestrian and riding cyclist) and 4+1
(pedestrian, riding cyclist, walking cyclist anddpstrian with umbrella), respectively. In thesddalonly

the true positive classification (correctly clamsi) is represented as a first step. Still a fldssification
evaluation needs to be performed. It can be noticadriding cyclists are best distinguishable thge with
pedestrian and walking cyclist, while pedestriaiitth umbrella are not efficiently classified. Oremason for
the bad classification of umbrellas might be the tkensity of the events and the difficulty to recizg them

as one cluster. The other reason is probably thenlamber of test examples for this classificatidhis
object (umbrella) still needs further investigatigith more test data for robust analysis
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Fig. 6: Selected test scenarios

7 DISCUSSION

While the initial counting results are promising,sample of 128 passages is clearly too small for
representative performance figures. While nearlgrgxcommercially available counting technique ckim
counting accuracies of at least 95%, it remaineroftnclear for which accumulation interval the dmm
accuracy has been evaluated: If accuracy figuries te a time interval of several hours, temporgrgss
errors could be compensated. Furthermore, the eabfirthe ground truth data (reference) can help
interpretation: Has the ground truth data beenctlirecollected by human observers (with correspogdi
inaccuracies for high people densities) or with Hedp of manual video annotation? Future work will
therefore include mounting the SmartCountPlus sefssan extended period of time at different locas.

In order to provide a sound basis for evaluatiode® footage will be captured for well-defined s, in
order to obtain a sound model of classification aadinting accuracy for different aggregation time
intervals.
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Figure
7a)
Type Nb. Correctly classified| Classification
cases (true positive only) rate (%)
Riding cyclist | 82 82 100
Pedestrian 26 24 92
Figure 7b)
Type Nb. Correctly classified| Classification
cases| (true positive only) rate (%)
Riding cyclist 82 79 96
Pedestria 26 24 92
Walking cyclist | 13 12 92
umbrelle 7 3 43
Figure 7c)

Fig. 7: Classification Results (a) classification fioling cyclists and pedestrian using the two fezg2D size (length to width
ration) and passage duration (b) 2-1 classificatjon4-1 classification
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