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1 ABSTRACT 

We introduce a novel visual counting device being able to automatically discriminate between participants of 
non-motorised traffic (pedestrians, bicyclists). The sensor elements (pixels) respond to relative light intensity 
changes, thus avoiding conventional imaging and privacy issues usually raised by the public when it comes 
to visual surveillance. Three-dimensional depth information is computed with the stereo principle, and the 
set of light intensity change events is grouped together with a clustering algorithm to discriminate between 
moving objects. A classification algorithm based on descriptive features then identifies indivual participants 
of non-motorised traffic. A preliminary evaluation on a dataset with 128 passages shows a classification rate 
of 92% for riding cyclists and 100% for pedestrians for 2+1 classification, and 43-96% for 4+1 classification 
distinguishing between riding cyclists, pedestrians, walking cyclists, umbrellas and other objects. 

2 INTRODUCTION 

Volumes of non-motorised traffic are defined by the number of pedestrians and bicyclists per unit time. They 
are a key performance measure necessary to evaluate the impact of pedestrian and bicycle infrastructure 
improvements, to develop estimates of pedestrian and bicyclist risks, and to understand the environmental 
correlates of walking and cycling (SCHWARTZ et al., 2000). One of the most promising strategies for 
improving the amount and quality of non-motorised traffic volume data is to employ automated counting 
devices. Automated devices have the potential to reduce costs associated with traditional manual counting 
methods, including the cost of data input and storage, and to produce long-term continuous counts of non 
motorised traffic activity. Without automated devices, the manual collection of counts of more than a few 
days in length is highly impractical. (GREEN-ROESEL et al., 2008). 

Ideally, rather than seperately counting pedestrians and bicylcles with dedicated automated devices, it is 
desirable that a single self-contained device be able to discriminate between the participants and provide at 
the interface the various traffic counts. Fig. 1a) shows a typical setup, where a park has two separate lanes 
for pedestrians and cyclicts, respectively. Fig. 1b) shows a similar setup with a bicyle and pedestrian lane. 
Fig. 1c) shows a mixed scenario comprising riding cyclists, pedestrians and pedestrians with umbrellas (a 
feature often not taken into account) captured from the bridge shown Fig. 1b). 

The main objective of the SmartCountPlus project is to implement a stand-alone sensor device being able to 
deliver separate counts for pedestrians and bicycles and their velocities. After a brief review of the state of 
the art of automated pedestrian and bicyle counting in Section 3, this paper introduces the SmartCountPlus 
sensor device in Section 4. Section 5 sketches the main principles of individually counting non motorised 
traffic participants on data captured with the SmartCountPlus sensor device. Section 5 provides preliminarly 
experimental results performed on data captured at the scenario of Fig. 1b) and c). 

   

Figure 1 a, b and c 

Fig. 1: Many non-motorised traffic scenarios are mixed (a) bicycle and pedestrian lane in a park (b) bicycle 
and pedestrian lane under a bridge (c) mixed scenario involving bicyclists, pedestrians and pedestrians with 
umbrellas as viewed from the bridge in (b) 
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3 STATE OF THE ART AND CONTRIBUTION 

Technologies for obtaining automatic pedestrian counts have been mainly developed for indoor 
environments (e.g. shopping malls) or low-density outdoor environments (e.g. trails). The study in (GREEN-
ROESEL et al., 2008) provides an overview of existing pedestrian counting technologies. Due to strongly 
varying environmental conditions such as rainfall, snow and lighting, existing technologies are often not 
suited for counting pedestrians in urban outdoor environments. For example, (CLARK, 2009) reports 
findings from monitoring success and failure of walking investment in London, where laser based counters 
wer reported not to work as desired. Instead, (CLARK, 2009) reports ‘CCTV’ (Closed Ciruit Television) as a 
sucessful technology, without specifying the technology or product which actually performs automated 
analysis of the captured video data for pedestrian counting. The same holds for the study of pedestrian 
quality standards in New York City (NG, 2009). Indeed, reliable automated video analysis for pedestrian 
counting is still a challenging scientific top in the field of computer vision, especially for crowded scenarios 
involving dense groups of people, see e.g. the proceedings of the Performance Evaluation of Tracking and 
Surveillance (PETS) workshop series (PETS, 2009). While surveillance systems exist which classify 
between vehicles and loose groups of pedestrians, e.g. (SHAH et al., 2007), there is currently no system 
available discriminating reliably between pedestrians and cyclists. Recent commercially available pedestrian 
counting technologies include the modulated light intensity (MLI) (IEE,2010), which does not discriminate 
between pedestrians and bicyclists. 

Automatic bicycle counting technologies are already more established and have similar advantages and 
disadvantages as pedestrian counting technologies, though desnse groups of bicycles are less likely than 
pedestrian crowds. As an example, automated bicycle counts have been measured in the city of Vienna, 
Austria since 2002 with the help of radar technology, and recently with induction loops. Simple rules 
dicriminate between bicyclists and other objects. 

SmartCountPlus builds upon an existing visual indoor people counting technology developed by the AIT 
Neurinformatics group (SCHRAML et al, 2010a). This highly accurate people counting system has been 
already installed at a number of indoor locations, including a crowd control systems for a subway station 
attached to a soccer stadium (SEER et al, 2008). The major objective of SmartCountPlus is to extend this 
counting technology to be robust against outdoor conditions, where the major contributions are as follows: 

• to extend the maximum capturing area of 3.3 meters in order to cope with broader outdoor scenarios, 

• to develop embedded clustering and classification algorithms which run on the sensor device and are 
able to discriminate between pedestrians, pedestrians with umbrellas and bicyclists and calcluate 
their velocities, 

• to perform extensive field tests at various scenarios, and to model classification and counting 
accuracy as well as dependencies on external data such as weather. 

4 SMARTCOUNTPLUS SENSOR DEVICE 

The sensor device is based on the principle of stereo vision which aims at duplicating the human visual 
system by computing a third dimensions (depth) using a pair of vision sensors. With stereo processing, 
adverse environmental conditions such as rain or cast shadows (which are a major challenge in visual 
processing systems) can be better met than with a mere 2D visual processing (GRUBB et al., 2004).  

    

Figure 2 a, b, c, and d 

Fig. 2: (a) Still image of two cyclists from a conventional video camera (b) light change events of the two 
dynamic stereo vision sensors corresponding to the scene in (a), (c) depth map computed by stereo (d), color 
code indicating range in meters from sensor 
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Figure 3 a and b 

Fig. 3: (a) SmartCountPlus sensor housing (b) illustration of reduced capturing width when sensor device is 
mounted in a slanted position. 

One vision sensor consists of an array of 128x128 array elements (pixels), where the pixels respond to 
relative light intensity changes. Note that since only light intensity changes are captured, no classical image 
in the visual spectrum is ever generated. Fig. 2a) shows a still image of a scene captured with a conventional 
video camera: The scene contains two riding cyclists, and Fig. 2b) shows the two corresponding two stereo 
pairs which are generated by the SmartCountPlus sensors: a dark pixel indicates a change from high intensity 
to low intensity and vice versa. Only the pixel elements which are changing intensity, so called ‘address 
events’ are transmitted by the sensor. Fig. 2c) shows the corresponding ‘event depth map’, where the color 
indicates the distance from the sensor (see Fig. 2d). Such spatio-temporal depth data are the input for the 
algorithms discriminating between cyclists and pedestrian. 

Note that the image in Fig. 2a) is only for illustration purposes, and the sensor device never captures a 
conventional image. People can never be recognized in the captured depth data illustrated in Fig. 2b) and c) – 
such a processing therefore meets privacy concerns which are always raised when capturing visual data. 

Fig. 3a) shows the housing of the SmartCountPlus device, including the two lenses of the two stereo vision 
devices which are separated by 26 cm. When installed in a ‘top view’ bird’s eye position, a cross-section of 
4.4 m width can be captured. In contrast to indoor scenarios, top view positions are often hard to obtain in 
outdoor scenarios, thus requiring mounting the sensor device in a slanted position. A slanted mounting 
position, however, will reduce the overall width of the captured cross-section, as illustrated in Fig. 3b). Table 
1 quantifies the reductions of the capturing width depending for different angles as well as the optimal 
maximum mounting height. The ‘left’ and ‘right’ widths refer to the areas left and right of the dash-dotted 
line in Fig. 3b).  

 optimal 10° slant 20° slant 30° slant 
Stereo basis [cm] 26  26  26  26  
Slant angle [degr] 0  10 20 30 
Mounting height [m] 5.2 5.15 5.0 4.8 
Capturing width (left) [m] 2.2 2.77 3.2 3.5 
Capturing width (right) [m] 2.2 1.18 0.44 0.0 
Capturing width [m] 4.4 3.96 3.64 3.45 

  

Table 1: Optimal mounting height and capturing width for cross-sectional counting depending on the mounting angle 

5 CLUSTERING AND CLASSIFICATION  

The SmartCountPlus stereo vision sensor continuously generates events as a reaction to moving objects 
crossing the sensor field of view. Fig. 4 provides and overview of the processing steps, which are described 
in more detail in (BELBACHIR, 2010), (SCHRAML, 2010a) and (SCHRAML, 2010b). 

The objetive of clustering is is to group together events belonging to the same moving object (pedestrians, 
cyclists, umbrellas). The clusters are computed online, meaning that all events are grouped in one step such 
that individual events are assigned to a cluster at once. 
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Fig. 4: Steps for processing sensor data as shown in Fig. 2 to classify between different participants 

The objective of classification is to recognize the clustered objects’ events and separate them into pedestrians 
and cyclists. After having built clusters from events through moving objects, descriptive cluster features are 
used to separate between pedestrians and cyclists with the help of a decision tree. We use three features 
(length, width and passage duration) for the classification as illustrated in Fig. 5. For the decision tree, 
thresholds on length, width and passage duration are set in order to distinguish between the multiple objects, 

 

Fig. 5: Illustration of the features used for classification  

6 EXPERIMENTAL RESULTS 

To evaluate the event-based system and the classification method, we have collected real-world data at the 
test site shown in Fig. 1b). Test scenarios have been collected with a total of 128 passages (82 riding cyclists; 
26 pedestrians, 13 walking cyclists and 7 pedestrians with umbrellas). Fig. 6 shows selected test cases.  

Fig. 7a) shows classification results of riding cyclists and pedestrians for multiple scenarios using two 
dimensions (length to width ratio in the x-axis and passage duration in the y axis). The separating line 
represents the thresholds used in the decision tree for the classification. The two objects classes are almost 
linearly, separable. However, running persons can coincide with slowly riding cyclists. 

Fig. 7b) and c) present classification results for 2+1 classes (pedestrian and riding cyclist) and 4+1 
(pedestrian, riding cyclist, walking cyclist and pedestrian with umbrella), respectively. In these tables only 
the true positive classification (correctly classified) is represented as a first step. Still a full classification 
evaluation needs to be performed. It can be noticed that riding cyclists are best distinguishable together with 
pedestrian and walking cyclist,  while pedestrians with umbrella are not efficiently classified. One reason for 
the bad classification of umbrellas might be the low density of the events and the difficulty to recognize them 
as one cluster. The other reason is probably the low number of test examples for this classification. This 
object (umbrella) still needs further investigation with more test data for robust analysis 
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Fig. 6: Selected test scenarios 

7 DISCUSSION 

While the initial counting results are promising, a sample of 128 passages is clearly too small for 
representative performance figures. While nearly every commercially available counting technique claims 
counting accuracies of at least 95%, it remains often unclear for which accumulation interval the counting 
accuracy has been evaluated: If accuracy figures refer to a time interval of several hours, temporary gross 
errors could be compensated. Furthermore, the nature of the ground truth data (reference) can help 
interpretation: Has the ground truth data been directly collected by human observers (with corresponding 
inaccuracies for high people densities) or with the help of manual video annotation? Future work will 
therefore include mounting the SmartCountPlus sensor for an extended period of time at different locations. 
In order to provide a sound basis for evaluation, video footage will be captured for well-defined intervals, in 
order to obtain a sound model of classification and counting accuracy for different aggregation time 
intervals. 
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Figure 
7a)

Type Nb. 
cases 

Correctly classified 
(true positive only) 

Classification 
rate (%) 

Riding cyclist 82 82 100 
Pedestrian 26 24 92 

  

Figure 7b) 
Type Nb. 

cases 
Correctly classified 
(true positive only) 

Classification 
rate (%) 

Riding cyclist 82 79 96 
Pedestrian 26 24 92 
Walking cyclist  13 12 92 
umbrella 7 3 43 

  

Figure 7c) 

Fig. 7: Classification Results (a) classification for riding cyclists and pedestrian using the two features 2D size (length to width 
ration) and passage duration (b) 2-1 classification, (c) 4-1 classification 
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